

Flemming Videbaek
Brookhaven National Laboratory
For the ATLAS collaboration

Overview of Lecture

- Introduction
 - Study of QCD and QCD matter.
 - Discoveries and lessons learned from RHIC and SPS
- The ATLAS HI program
 - The very first results
 - bulk properties: multiplicity, collective flow, spectra
 - Jet measurements –quenching medium response
 - · Jet reconstruction, jet shapes, di-jet,
 - Photon measurements = quenching medium response
 - Gamma, γ-jet, (tagged jets)
 - Charmonium measurements probing Debye screening
 - Forward (low-x) physics with ZDC
- Summary

Study of QCD and QCD matter

Lattice QCD Low T:
non-perturbative
Very high T:
perturbative
Transition:
surely non-pQCD!

Creating and Probing QCD matter

- Collide Heavy Ions (Au or Pb) at √s >17 GeV
 - Last two decades at CERN, RHIC
 - Soon at LHC at 5.5 or 4 TeV at a factor of 20-30 increase in energy.
- Probes
 - Radiation, collective motion
 - Hard probes produced early in collision; partons interact with medium.

Collectivity: anisotropic (elliptic) flow

 $dN/d\phi \sim 1 + 2 v_2(p_T) \cos(2\phi) + ...$

"elliptic flow" Elliptic flow is the second harmonic in the Fourier expansion of azimuthal particle distribution.

Matter flow collectively;

Only if the pressure has developed early (< 1 fm/c) is ideal hydro reached/maintained.

Calculations (newer) has shown that viscosity must be small

colored probes lose energy, photons don't

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{T_{AA} d^2 \sigma^{NN} / dp_T d\eta}$$

LHC and Beyond - University of Lund, February 2-3 Surface emission

Di-jets are suppressed

opaque to heavy quarks*

Lose ~ as much energy as light quarks & gluons!

Actually flow along with the bulk medium!

* Measured via $c \rightarrow e\pm$, reconstructed D at low p_T

Expectations / Uncertainties for LHC

Bulk properties at LHC

dN_{ch}/dη in Pb+Pb
N_{part}: # participating
nucleon in collisions
Large uncertainties

What happens to v_2 at high \sqrt{s} . Is it saturated? Larger than ideal hydro?

Jets at LHC

- At RHIC jet has primarily been studied through leading particle measurements.
- At LHC jets will be copiously produced per event.
- Will be ideal probe for study on effect of media on partons.

Medium Photons

Turbide, Gale, Jeon, and Moore PRC (2004) 014906

Photons are abundantly produced at LHC Jet-photon conversion in the plasma dominates $8<p_T<14$ GeV Prompt hard NN scattering dominant for $p_T>20$ GeV at LHC over and above thermal components.

(taken from S.Bathe, RBRC, July 2008)

ATLAS detector

Phase space coverage 2π azimuthal coverage

Bulk PropertiesInner detector

dN_{ch/}dη – using hits in inner detectors Occupancy in Central Pb+Pb at 5.5 TeV Pixel < 2%; SCT < 20%

Multiplicities

Using vertex, B-layer and layer 1 hits to define tracklets. (a la PHOBOS)

clean; sensitive to low p_T tracks.

Tracklet method provides good estimate for initial Charged particle multiplicities.

E_T measurements

Collision centrality

Using Calorimeters Etot = Σ_{cells} E_{tot}

E_{tot} is monotonically correlated with collision parameters (N_{coll}, N_{part},b). Energy depositions in different calorimeter system are well correlated.

Collision Centrality precision

HIJING – in 20 centrality bins; each 5% of inelastic cross section

Very good centrality determination in ATLAS with multiple methods.

E_T Measurements in Pb+Pb Collisions

dE_t/dη extracted from calibrated transverse energy deposited in Cells

Evaluate correction from MC studies of $dE_{True (MC)}/dE_{T (cell)}$

Good agreement on cell base

Using missing E_T cluster based algorithm $-E_T$ cell) + E_T (muon)

-Accurate to ~5%.

true

HIJING, Pb+Pb, 5.5 TeV

3000

2500

LHC and Beyond - University of Lund, February 2-3

Elliptic flow

In ATLAS several methods can be deployed to extract the v₂ in the HI reactions.

Fourier decomposition with respect to estimated reaction plane (RP)

$$v_2 = \frac{v_2'}{\sqrt{\left\langle \cos[2(\Psi_2^N - \Psi_2^P)] \right\rangle}}.$$

Resolution Correction for reaction plane estimated obtained with different sub systems.

$V_2(p_T)$

- Determine elliptic flow for charged hadrons
- RP (squares), two-particle correlations (stars), and Lee-Yang Zeros method (triangles)

Tracking

- Tracking uses pixel, SCT; The TRT has too high occupancies in HI collisions.
- Results are very good for $|\eta|$ <1 but challenging for higher η .

Summary - bulk

- The global measurement just discussed are also very relevant and easy to do for Min. Bias
- Centrality can be determined from calorimeters, charged particle distributions. The accuracy is ~ 10% on an events basis in -2.5 < η < 2.5
- Transverse energy $dE_T/d\eta$ can be determined on an event basis over broad η range.
- The elliptic flow can be determined over a large centrality range with good resolution (correction factors close to 1).

Probing the medium with initial scattered partons.

Phase space coverage 2π azimuthal coverage

- Longitudinal segmented (in EM and Hadronic)
- Fine eta strip in front of EMCal
 - •Separate γ and π^0 below 70 GeV
- Ideal for jet and photon measurements
- Utilize tracking to study fragmentation properties.

Jet Reconstruction

- Embed PYTHIA di-jet events in HIJING
 - Without quenching
 - Limit Q²<100 GeV²
 - i.e. no HIJING jets
 - 70 GeV jet
- Compare results to jet reconstruction on PYTHIA
 - Same approach as in 14 TeV p+p analysis

Jet Reconstruction

 In HI events subtract the underlying event by removing η-dependent average E_T

Jet Reconstruction

- Cone jet reconstruction
 - Cluster towers within a radius of R=0.4 around 5 GeV seed towers
 - Iterates on jet position until convergence or excluded

Jet performance, resolution

- Energy resolution gets somewhat worse with increasing multiplicity
- Resolution roughly constant with η.

Inclusive Jets in Pb+Pb

 $dN/d\eta \sim 2700$

At 70 GeV

Efficiency~ 70%

B/(B+S) ~3%

σ(E)/E ~25%

Example of jet reconstruction compared to input distribution.

Jet modification due to media

Fragmentation D(z) using leading charged hadrons.

Expectation this will reflect media properties.

Excellent reproduction in simulations.

Jet modification due to media

Study j_T-distributions and modification
Track charged tracks to match jet in calorimeter
Enable us to investigate energy loss models

Di-jet reconstruction

Angular correlation between backto-back jet broader in Pb+Pb due to multiple scattering in medium

The large acceptance of ATLAS and good resolution allows for these studies.

Large signal evident Low background

For a 100 GeV jet ~60%
 probability to detect associated jet
 (>70 GeV) from integrals of the conditional yields

Heavy quark-jets Correlations

-099

- Why are heavy flavors as suppressed as light flavors?
- c,b→D,B + others →µ+ others
- Tag heavy quark jet (c,b) by high p_T muons
- Require muon p_T>5 GeV and jet ET>35 GeV
 - Use pt. 1/3 of away-side jet each from b/c, light quarks +gluons.
 - ─ ☐ High p_T: dominated by bottom quark.

γ-jet Measurements

- γ-jet gives better access to media modification studies.
- +Less surface bias.
- +Parton energy is precisely known.
- -Large background from hadronic (π^0) decay
- -Smaller yield

Photon-ID

- Two independent methods are possible in ATLAS
 - Shower shape analysis
 - Isolation Cuts.
- Will discuss these in the following slides

Strip layer of EMCAL provides for shower shape analysis

- Designed to measure and rejecting di-jets
- γ and π^0 separation for E_T<70 GeV
- Front layer
 - strips typically 0.003x0.1 in ΔηxΔφ
 - Over |η|<2.5

Photon identification

A number of different parameters have been developed based on information in the strip layer.

TMVA methods were used to optimize efficiency vs. background.

Good energy and angular resolution is achieved

Rejection can be improved by tighter cuts

Isolation cuts

- Hight-p_t gammas from hadronic decays usually associated with jets. Ensure that no jet is nearby photon candidates.
- Isolation requirements
 - Only tracks with p_t < 2.5 within 0.02<R<0.2 cone
 - Tower E_T <31 GeV (+ small fraction of photon)
- Cuts chosen to have high efficiency with good rejection

Combining cuts

- Performance of shower shape + isolation cuts for PYTHIA embedded di-jets in Central Pb+Pb events.
- Compared to direct photon spectrum.

S/B vs. centrality and E_T

Estimated rates

- Expected direct photon spectra for 1 month in $|\eta|$ <2.4
- Assuming neutral hadron R_{AA}=1 (worst case).
- γ rate for 1 year LHC run of 0.5 nb⁻¹.
- 200k at E>30 GeV, 10 k at E>70 GeV
- Measurement γ-jet correlation and fragmentation function

γ-jet Correlation

- Clean γ-jet dφ distribution in central Pb+Pb.
- Measure in-medium jet-fragmentation function.
- May help jet analysis at low E_t by tuning algorithms, reject fake jets.

γ-jet S/B

Summary γ, γ-jet

- The first EM-layer provides rejection factors against neutral hadrons of 1.5-6.
- Combination with isolation cuts provides a total relative rejection in central Pb+Pb of ~ 20.
- γ efficiency ~ 60% down to 20 GeV/c
- Tight shower cuts alone allow for studies of fragmentation photons, medium induced bremsstrahlung.
- Will provide 200k photons with S/B >1 for > 30 GeV/c; 10K > 70 GeV/c per HI run (1 month)

Quarkonia measurements.

- Measurements of quarkonia has a long history from SPS, RHIC – but not conclusive.
- Will Upsilon states be more conclusive about color screening than J/Ψ states?
- Initial temperature higher at LHC.

Y measurements

~ 1 month Pb+Pb with $|\eta|$ <1.

Reconstructed Y – p_T spectrum. Samples full p_T range in $|\eta| < 1$.

J/W

J/Ψ provided connection to SPS/RHIC data.

Reconstructed $J/\Psi - p_T$ spectrum. With nominal muon p_T cut samples high p_T region.

Possible with lower p_T cut to sample full p_T range, but at $|\eta| \sim 2$.

~ 1 month Pb+Pb with $|\eta|$ <1. Muon p_T cut ~ 3 GeV/c

Forward Physics

- Design triggering Pb+Pb , p+A and pp
- Located in TAN at 140 m sensitive to spectator neutrons.

Front EM X-Y section (24*24)

3 section hadronic calorimeter

Physics with ZDCs

Min Bias trigger for Pb+Pb. Fast and high efficiency. Provide centrality determination together with central calorimeters Provide access to low-x identified π^0 , η in p+p and p+A

Summary primary goals for ATLAS HI

- day-1 measurements in p+p and Pb+Pb of global observables such as dN/dη, dE_t/dη, v₂(p_t).
- Quantitative tomographic measurements of QGP using fully reconstructed jets, di-jet jet-fragmentation observables, photons, photon-jet.
- Probe Debye screening in the QGP via measurements of Y decays.
- p+A for study of low-x semi-hard processes to study nuclear shadowing and test models of gluon saturation.

Thanks

- Thanks to my colleagues in the ATLAS HI working group.
- Material from

ATLAS notes which are/will be in the conf proceedings:

M. Spousta, ATL-PHYS-PROC-2009-022, ATL-PHYS-PROC-2009-002

A. Trzupek, ATL-PHYS-PROC-2009-021

J. Jia, ATL-PHYS-PROC-2008-047

N. Grau, ATL-PHYS-PROC-2008-055

L. Rosselet, P. Nevski, S. Timoshenko, ATL-PHYS-PUB-2008-003

"Heavy Ion Physics Performance Report, in preparation"

06/09 NERVEPIRRENDE. Forskere ved CERN i Schweiz eksperimenterer med at skabe et sort hul Nerve wracking Researcher at CERN performs experiments to create black holes.

.Tegning: Lars Andersen (Berlingske Tidende, 6 Septermber 2008)